Unleashing the true value of a still undervalued resource: waste

28 August 2023

Unleashing the true value of a still undervalued resource: waste

How much is the waste worth? The global value of the waste-to-energy market reached 35.1 billion U.S. dollars in 2019. By 2027, the waste-to-energy market is expected to be valued at 50.1 billion U.S. dollars, growing at a CAGR of 4.6% from 2020 to 2027.
However, not all countries worldwide yet know and enhance the potential of waste, which can become a valuable resource for generating energy and, at the same time, an environmentally sustainable choice.

Waste-to-Energy global status quo

What is the current situation regarding the Waste-to-Energy sector globally?
In total, Europe's waste-to-energy capacity amounted to 5.1 gigawatts. In Europe, there were already over 400 waste energy facilities, and another 300 in the rest of the world.
In 2022, Germany had the greatest installed capacity of municipal waste energy plants with 1,068 megawatts installed across the country.

WtE in Europe

Installed capacity of municipal waste energy in Europe from 2010 to 2022, by Country (in megawatts) - Source: Statista

And what about the United States? Currently, in the US over half of the volume of municipal solid waste is discarded while the rest of household waste is either recovered or used to generate steam and electricity. Nowadays there are some 86 waste-to-energy facilities in the United States.
An even different situation concerns Southeast Asia where European firms are beginning to invest heavily in waste-to-energy (WtE) markets. According to energymonitor.ai, there are more than 100 waste-to-energy projects recently completed or underway in the Philippines, Indonesia, and Thailand.
European and Japanese companies have long dominated the WtE industry, while most other countries and regions in the world have very few incinerators or WtE plants. Most of municipal solid and commercial waste all over Asia is still landfilled or openly dumped. Recovering energy from incineration is, without a doubt, a more sustainable choice. That is why many cities are considering waste-to-energy.
Of course, it should be considered that in Asian landfills there is not as much separation of material between recyclables and non-recyclables. If not properly regulated, this could pose a problem for GHG emissions, and also because recycling, for most materials, is preferable and obviously more sustainable than incineration.

Waste to energy: How does it work?

In plain language, waste-to-energy (WtE) plants burn municipal solid waste (MSW) to produce steam in a boiler, and this steam is used to power an electric generator turbine or district heating. The incineration of municipal solid waste usually reaches temperatures of up to 1100°C. This kind of plants are increasingly being used in Europe as well as China and Japan.
In the past, this was an unregulated practice and therefore polluting. But now, due to stricter regulations and cutting-edge scrubbing technologies, modern WtE plants do not release as much pollution as in the past. And we can firmly say that waste is a much more sustainable choice than many other energy sources.
MSW is actually a mixture of energy-rich materials such as paper, plastics, yard waste, and products made from wood.

MSW composition

Source: the Global CCS Institute

But its value lies not only in its calorific power. There is much more: municipal solid waste incineration (MSWI) bottom ash contains economically significant levels of silver, gold, and other precious metals. The composition of IBA (incinerator bottom ash) depends on the composition of the burned waste; therefore, it may contain significant amounts of both ferrous and non-ferrous (NFe) metals.
Precious metals seem to come mainly from waste electrical and electronic equipment (WEEE) in parts smaller than 2mm, while some larger parts come from jewelry. The separation of precious metals from ashes may be profitable when considering the currently high prices of nonferrous metals.

Recovering precious metals from IBA

Recovery of NFe metals in IBA treatment is now a common practice due to modern technologies. But much depends on how the ash is extracted: wet or dry system.
Dry bottom ash extraction systems allow a higher rate of metal recovery.
Magaldi has been the first company worldwide to introduce the dry bottom ash handling technology, using ambient air instead of water during the extraction and cooling phases: the Magaldi Ecobelt® WA system.
The Ecobelt® WA improves the metal recovery rates by allowing the downstream recovery system to target smaller metal particles (< 0.3 mm). These recovery rates are significantly higher than the ones typically achieved from wet ash.
Also, the absence of water prevents further oxidation, providing cleaner metals that can go directly to the smelter. The enhanced metal recovery process also reduces the carbon footprint. It is estimated that the climate mitigation potential of metal recovery amounts to about 1 ton of CO2 equivalent for each ton of dry IBA treated, 5000 tons of treated IBA correspond to 20000 MWh district heating in terms of CO2 eq (source ZAR).
The remaining inert fraction could also be reused in the construction sector, mainly in road paving. On the contrary to wet ash, dry ash - extracted with Ecobelt® WA - contains low amounts of TOC. This makes it much more marketable to the construction industry, plus it is not a difficult residue to dispose of.

Waste-to-Profit

For more than one reason, WtE is a sustainable way to dispose of non-recyclable waste, deriving energy and environmental benefits in a sustainable manner.
Furthermore, dry IBA extraction and handling systems can provide advantages for WtE plants such as water and related cost savings, enhanced metal recovery, lower operating costs, higher boiler efficiency, process environmental sustainability, and marketable ash and metals.
A sustainable solution for the environment and institutions, a profitable one for firms investing in the WtE sector.

News

Every Drop Matters: Rethinking Water Use in IBA Handling

17 June 2025

Every Drop Matters: Rethinking Water Use in IBA Handling Water scarcity is a growing global crisis, yet many Waste-to-Energy plants still rely on water-intensive methods to manage incinerator ash, wasting millions of liters annually and risking costly environmental damage. What if there were a way to eliminate water use, slash costs, and boost sustainability? Discover how Magaldi’s revolutionary dry IBA management system, MADAM, is transforming the industry and why this shift could be a game-changer for water-stressed regions worldwide. Dive into the full story to see how every drop truly matters.

Read More

News

Countdown to the Inauguration of the First Industrial-Scale MGTES Facility!

05 June 2025

Magaldi is excited to announce the upcoming inauguration of the first industrial-scale MGTES (Magaldi Green Thermal Energy Storage) facility, featuring a video that provides an exciting glimpse into this groundbreaking technology. Set to launch in the coming months, this MGTES facility is poised to revolutionize energy storage. Watch the video and stay tuned for further updates!

Read More

News

Spain’s Waste Challenge: Time to Turn the Tide with Waste-to-Energy

16 May 2025

Spain is at a tipping point in its waste management journey. With over 47% of municipal waste still heading to landfills, the country is falling behind its European neighbors — but also standing on the edge of a major opportunity. As Waste-to-Energy (WtE) gains momentum across Europe, this article dives into why it’s time for Spain to turn the tide. From policy gaps and public misconceptions to cutting-edge innovations like MADAM (Magaldi Dry Ash Management) system, discover how smart technologies and bold action could transform waste into a valuable resource — and landfills into a thing of the past.

Read More

News

Innovation and Sustainability: MIMIT-Funded Project for Digital Transformation

15 May 2025

The project funded by MIMIT under the New Innovative Machinery Announcement has resulted in significant investments aimed at transforming the company’s technology. By implementing new facilities and advanced management systems, the company has enhanced the efficiency, flexibility, and speed of its production cycle. Completed on October 21, 2022, this initiative was a crucial response to the COVID-19 pandemic and a vital step toward adopting Industry 4.0 technologies.

Read More